Abstract

Serum opacity factor (SOF) is a cell surface virulence factor made by the human pathogen Streptococcus pyogenes. We found that S.pyogenes strains with naturally occurring truncation mutations in the sof gene have markedly enhanced beta-hemolysis. Moreover, deletion of the sof gene in a SOF-positive parental strain resulted in significantly increased beta-hemolysis. Together, these observations suggest that SOF is an inhibitor of beta-hemolysis. SOF has two major functional domains, including an opacification domain and a fibronectin-binding domain. Using a SOF-positive serotype M89 S.pyogenes parental strain and a panel of isogenic mutant derivative strains, we evaluated the relative contribution of each SOF functional domain to beta-hemolysis inhibition and bacterial virulence. We found that the opacification domain, rather than the fibronectin-binding domain, is essential for SOF-mediated beta-hemolysis inhibition. The opacification domain, but not the fibronectin-binding domain of SOF, also contributed significantly to virulence in mouse models of bacteremia and necrotizing myositis. Inasmuch as the opacification domain of SOF is known to interact avidly with host high-density lipoprotein (HDL), we speculate that SOF-HDL interaction is an important process underlying SOF-mediated beta-hemolysis inhibition and SOF-mediated virulence. IMPORTANCEStreptococcus pyogenes is a major human pathogen causing more than 700 million infections annually. As a successful pathogen, S.pyogenes produces many virulence factors that facilitate colonization, proliferation, dissemination, and tissue damage. Serum opacity factor (SOF), an extracellular protein, is one of the virulence factors made by S.pyogenes. The underlying mechanism of how SOF contributes to virulence is not fully understood. SOF has two major features: (i) it opacifies host serum by interacting with high-density lipoprotein, and (ii) it inhibits beta-hemolysis on blood agar. In this study, we demonstrate that the domain of SOF essential for opacifying serum is also essential for SOF-mediated beta-hemolysis inhibition and SOF-mediated virulence. Our results shed new light on the molecular mechanisms of SOF-host interaction.

Highlights

  • Serum opacity factor (SOF) is a cell surface virulence factor made by the human pathogen Streptococcus pyogenes

  • Beta-hemolysis in S. pyogenes is mediated by streptolysin S (SLS) [13, 14]

  • To study the effects of sof mutation on beta-hemolysis, we examined the phenotype of two serotype M89 clinical isolates with naturally occurring truncation mutations in the sof gene

Read more

Summary

Introduction

Serum opacity factor (SOF) is a cell surface virulence factor made by the human pathogen Streptococcus pyogenes. Deletion of the sof gene in a SOF-positive parental strain resulted in significantly increased beta-hemolysis. Using a SOF-positive serotype M89 S. pyogenes parental strain and a panel of isogenic mutant derivative strains, we evaluated the relative contribution of each SOF functional domain to beta-hemolysis inhibition and bacterial virulence. We found that the opacification domain, rather than the fibronectin-binding domain, is essential for SOF-mediated beta-hemolysis inhibition. The opacification domain, but not the fibronectin-binding domain of SOF, contributed significantly to virulence in mouse models of bacteremia and necrotizing myositis. SOF has two major features: (i) it opacifies host serum by interacting with high-density lipoprotein, and (ii) it inhibits betahemolysis on blood agar. The investigators showed that crude culture supernatants from strongly SOF-positive strains inhibit SLS activity [16]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.