Abstract

In an effort to elucidate the causes of early life stage mortality, the histological characteristics of oocyte atresia were examined biweekly in the European common cockle Cerastoderma edule (Linnaeus, 1758) over an 11-mo-period (January–November 2018), at a farmed site on the French Atlantic coast. Gametogenesis was continuous at the population level, with no apparent interindividual synchronicity. Atresia was observed throughout the year, at all stages of oogenesis, characterized by loss of the nucleolus, nuclear and chromatin degradation, and angular cell shape. Both atresic and nonatresic oocytes were observed in the same gonad acini, suggesting that the process was either not propagated or not synchronized. Stereological counts showed that atresic oocytes occupied an annual mean of 30% (range 12%–47%) of the oocyte volume. Estimation of the minimum atresic impact showed that more than 50% of the oocytes, whose fate can be determined from histological sections, were or would become atresic, reducing the fecundity accordingly. Together with previously reported results in other bivalve species, this underscores the need for better recognition, documentation, and integration of this process into models of fecundity, reproductive effort, population dynamics, and production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.