Abstract

The common marmoset (Callithrix jacchus) represents a promising nonhuman primate model for the study of human diseases because of its small size, ease of handling, and availability of gene-modified animals. Here, we aimed to devise reproductive technology for marmoset spermatid injection using immature males for a possible rapid generational turnover. Spermatids at each step could be identified easily by their morphology under differential interference microscopy: thus, early round spermatids had a round nucleus with a few nucleolus-like structures and abundant cytoplasm, as in other mammals. The spermatids acquired oocyte-activating capacity at the late round spermatid stage, as confirmed by the resumption of meiosis and Ca2+ oscillations upon injection into mouse oocytes. The spermatids could be cryopreserved efficiently with a simple medium containing glycerol and CELL BANKER®. Late round or elongated spermatids first appeared at 10-12 months of age, 6-8 months before sexual maturation. Marmoset oocytes microinjected with frozen-thawed late round or elongated spermatids retrieved from a 12-month-old male marmoset developed to the 8-cell stage without the need for artificial oocyte activation stimulation. Thus, it might be possible to shorten the intergeneration time by spermatid injection, from 2 years (by natural mating) to 13-15 months including gestation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.