Abstract

BackgroundRodents are thought to be produced their human-audible calls (AUDs, below 20 kHz) with phonation mechanism based on vibration of the vocal folds, whereas their ultrasonic vocalizations (USVs, over 20 kHz) are produced with aerodynamic whistle mechanism. Despite of different production mechanisms, the acoustic parameters (duration and fundamental frequency) of AUDs and USVs change in the same direction along ontogeny in collared lemming Dicrostonyx groenlandicus and fat-tailed gerbil Pachyuromys duprasi. We hypothesize that this unidirectional trend of AUDs and USVs is a common rule in rodents and test whether the AUDs of yellow steppe lemmings Eolagurus luteus would display the same ontogenetic trajectory (towards shorter and low-frequency calls) as their USVs, studied previously in the same laboratory colony.ResultsWe examined for acoustic variables 1200 audible squeaks emitted during 480-s isolation-and-handling procedure by 120 individual yellow steppe lemmings (at 12 age classes from neonates to breeding adults, 10 individuals per age class, up to 10 calls per individual, each individual tested once). We found that the ontogenetic pathway of the audible squeaks, towards shorter and lower frequency calls, was the same as the pathway of USVs revealed during 120-s isolation procedure in a previous study in the same laboratory population. Developmental milestone for the appearance of mature patterns of the squeaks (coinciding with eyes opening at 9–12 days of age), was the same as previously documented for USVs. Similar with ontogeny of USVs, the chevron-like squeaks were prevalent in neonates whereas the squeaks with upward contour were prevalent after the eyes opening.ConclusionThis study confirms a hypothesis of common ontogenetic trajectory of call duration and fundamental frequency for AUDs and USVs within species in rodents. This ontogenetic trajectory is not uniform across species.

Highlights

  • Rodents are thought to be produced their human-audible calls (AUDs, below 20 kHz) with phonation mechanism based on vibration of the vocal folds, whereas their ultrasonic vocalizations (USVs, over 20 kHz) are produced with aerodynamic whistle mechanism

  • The ontogenetic trajectory towards shorter and Volodin et al BMC Zool (2021) 6:27 higher-frequency Ultrasonic vocalization (USV) was found in fat-tailed gerbils Pachyuromys duprasi [8]

  • The aim of this study was to track the ontogenetic pathways of the acoustic parameters, contour shape and presence of nonlinear vocal phenomena in the audible sharp squeaks of yellow steppe lemming from birth to adulthood

Read more

Summary

Introduction

Rodents are thought to be produced their human-audible calls (AUDs, below 20 kHz) with phonation mechanism based on vibration of the vocal folds, whereas their ultrasonic vocalizations (USVs, over 20 kHz) are produced with aerodynamic whistle mechanism. Despite of different production mechanisms, the acoustic parameters (duration and fundamental frequency) of AUDs and USVs change in the same direction along ontogeny in collared lemming Dicrostonyx groenlandicus and fat-tailed gerbil Pachyuromys duprasi. We hypothesize that this unidirectional trend of AUDs and USVs is a common rule in rodents and test whether the AUDs of yellow steppe lemmings Eolagurus luteus would display the same ontogenetic trajectory (towards shorter and low-frequency calls) as their USVs, studied previously in the same laboratory colony. Yellow-bellied marmots Marmota flaviventris display the ontogenetic trend towards shorter and lower-frequency audible alarm calls [14, 16]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.