Abstract

The Gemini Planet Imager (GPI) entered on-sky commissioning and had its first-light at the Gemini South (GS) telescope in November 2013. GPI is an extreme adaptive optics (XAO), high-contrast imager and integral-field spectrograph dedicated to the direct detection of hot exo-planets down to a Jupiter mass. The performance of the apodized pupil Lyot coronagraph depends critically upon the residual wavefront error (design goal of 60 nm RMS with 5 mas RMS tip/tilt), and therefore is most sensitive to vibration (internal or external) of Gemini's instrument suite. Excess vibration can be mitigated by a variety of methods such as passive or active dampening at the instrument or telescope structure or Kalman filtering of specific frequencies with the AO control loop. Understanding the sources, magnitudes and impact of vibration is key to mitigation. This paper gives an overview of related investigations based on instrument data (GPI AO module) as well as external data from accelerometer sensors placed at different locations on the GS telescope structure. We report the status of related mitigation efforts, and present corresponding results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.