Abstract
We explore field theories of a single p-form with equations of motions of order strictly equal to two and gauge invariance. We give a general method for the classification of such theories which are extensions to the p-forms of the Galileon models for scalars. Our classification scheme allows to compute an upper bound on the number of different such theories depending on p and on the space-time dimension. We are also able to build a non trivial Galileon like theory for a 3-form with gauge invariance and an action which is polynomial into the derivatives of the form. This theory has gauge invariant field equations but an action which is not, like a Chern-Simons theory. Hence the recently discovered no-go theorem stating that there are no non trivial gauge invariant vector Galileons (which we are also able here to confirm with our method) does not extend to other odd p cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.