Abstract
In this letter, we propose a method to automate the exploration of unknown underwater structures for autonomous underwater vehicles (AUVs). The proposed algorithm iteratively incorporates exteroceptive sensor data and replans the next-best-view in order to fully map an underwater structure. This approach does not require prior environment information. However, a safe exploration depth and the exploration area (defined by a bounding box, parameterized by its size, location, and resolution) must be provided by the user. The algorithm operates online by iteratively conducting the following three tasks: 1) Profiling sonar data are first incorporated into a 2-D grid map, where voxels are labeled according to their state (a voxel can be labeled as empty, unseen, occluded, occplane, occupied, or viewed). 2) Useful viewpoints to continue exploration are generated according to the map. 3) A safe path is generated to guide the robot toward the next viewpoint location. Two sensors are used in this approach: a scanning profiling sonar, which is used to build an occupancy map of the surroundings, and an optical camera, which acquires optical data of the scene. Finally, in order to demonstrate the feasibility of our approach, we provide real-world results using the Sparus II AUV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.