Abstract

Recurrent Neural Networks (RNN) are widespread for Video Super-Resolution (VSR) because of their proven ability to learn spatiotemporal inter-dependencies across the temporal dimension. Despite RNN’s ability to propagate memory across longer sequences of frames, vanishing gradient and error accumulation remain major obstacles to unidirectional RNNs in VSR. Several bi-directional recurrent models are suggested in the literature to alleviate this issue; however, these models are only applicable to offline use cases due to heavy demands for computational resources and the number of frames required per input. This paper proposes a novel unidirectional recurrent model for VSR, namely “Replenished Recurrency with Dual-Duct” (R2D2), that can be used in an online application setting. R2D2 incorporates a recurrent architecture with a sliding-window-based local alignment resulting in a recurrent hybrid architecture. It also uses a dual-duct residual network for concurrent and mutual refinement of local features along with global memory for full utilisation of the information available at each timestamp. With novel modelling and sophisticated optimisation, R2D2 demonstrates competitive performance and efficiency despite the lack of information available at each time-stamp compared to its offline (bi-directional) counterparts. Ablation analysis confirms the additive benefits of the proposed sub-components of R2D2 over baseline RNN models.The PyTorch-based code for the R2D2 model will be released at R2D2 GitRepo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.