Abstract

In this work, a terrain estimation framework is developed for autonomous vehicles operating on deformable terrains. Previous work in this area usually relies on steady state tire operation, linearized classical terramechanics models, or on computationally expensive algorithms that are not suitable for real-time estimation. To address these shortcomings, this work develops a reduced-order nonlinear terramechanics model as a surrogate of the Soil Contact Model (SCM) through extending a state-of-the-art Bekker model to account for additional dynamic effects. It is shown that this reduced-order surrogate model is able to accurately replicate the forces predicted by the SCM while reducing the computation cost by an order of magnitude. This surrogate model is then utilized in an unscented Kalman filter to estimate the sinkage exponent. Simulations suggest this parameter can be estimated within 4% of its true value for clay and sandy loam terrains. It is also shown in simulation and experiment that utilizing this estimated parameter can reduce the prediction errors of the future vehicle states by orders of magnitude, which could assist with achieving more robust model-predictive autonomous navigation strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.