Abstract

The ion-induced micellar transition is online-investigated by the time dependence of the viscosity of the solution under shear flow for the first time. During the morphological transition, the change in the micellar structure can be tracked by the change in viscosity. Adding HCl or CaCl2 into pre-prepared spherical micelle solution from the self-assembly of polystyrene-block-poly(acrylic acid) (PS144-b-PAA22) in the N,N-dimethylformamide (DMF)/water mixture, the micellar structures change into short cylinders, long, entangled cylinders, and then lamellae or vesicles, corresponding to the viscosity increasing first and then declining. When HCl or CaCl2 is added to the pre-prepared spherical micelle solution formed by PS144-b-PAA50 in the dioxane/water mixture, the micellar structures are quickly transformed into cylinders or lamellae before carrying out the rheological measurement and then are turned to vesicles or spheres under the shearing, corresponding to a gradual decline in viscosity. This study shows that the rheology can be a very simple and effective online method on the investigation of the micellization, which plays an important role in understanding the micellization mechanism and micellar transition pathway of block copolymers in dilute solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.