Abstract

This paper proposes a new method for online identification of a nonlinear system modelled on Reproducing Kernel Hilbert Space (RKHS). The proposed SVD–KPCA method uses the Singular Value Decomposition (SVD) technique to update the principal components. Then we use the Reduced Kernel Principal Component Analysis (RKPCA) to approach the principal components which represent the observations selected by the KPCA method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.