Abstract

In this paper we derive an online estimator for sparse parameter vectors which, unlike the LASSO approach, does not require the tuning of any hyperparameters. The algorithm is based on a covariance matching approach and is equivalent to a weighted version of the square-root LASSO. The computational complexity of the estimator is of the same order as that of the online versions of regularized least-squares (RLS) and LASSO. We provide a numerical comparison with feasible and infeasible implementations of the LASSO and RLS to illustrate the advantage of the proposed online hyperparameter-free estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.