Abstract
Online handwriting character recognition is gaining attention from the researchers across the world because with the advent of touch based devices, a more natural way of communication is being explored. Stroke based online recognition system is proposed in this paper for a very complex Gurmukhi script. In this effort, recognition for 35 basic characters of Gurmukhi script has been implemented on the dataset of 2019 Gurmukhi samples. For this purpose, 32 stroke classes have been considered. Three types of features have been extracted. Hybrid of these features has been proposed in this paper to train the classification models. For stroke classification, three different classifiers namely, KNN, MLP and SVM are used and compared to evaluate the effectiveness of these models. A very promising “stroke recognition rate” of 94% by KNN, 95.04% by MLP and 95.04% by SVM has been obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.