Abstract
Online data stream mining is one of the most important issues in data mining. Identifying the recent knowledge can provide valuable information for the analysis of the data stream. In this paper, we proposed an one-pass data stream mining algorithm to mine the recent frequent itemsets in data streams with a sliding window basing on transactions. To reduce the cost of time and memory needed to slide the windows, each items is denoted a bit-sequence representations. Basing on a priori property, this kind of representations can find frequent items in data streams efficiently. We named this method MRFI-SW (mining recent frequent itemsets by sliding window) algorithm. Experiment results show that the proposed algorithm not only attains highly accurate mining result, but also consumes less memory than existing algorithms for mining frequent itemsets over recent data streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.