Abstract

Auctions have been adopted by many major cloud providers, such as Amazon EC2. Unfortunately, only simple auctions have been implemented. Such simple auction has serious limitations, such as being unable to accept elastic user demands and having to allocate different types of VMs independently. These limitations create a big gap between the real needs of cloud users and the available services of cloud providers. In response to the limitations of the existing auction mechanisms, this paper proposes a novel online auction mechanism for IaaS clouds, with the unique features of an elastic model for inputting time-varying user demands and a unified model for requesting heterogeneous VMs together. However, several major challenges should be addressed, such as NP hardness of optimal VM allocation, time-varying user demands and potential misreports of private information of cloud users. We propose a truthful online auction mechanism for maximizing the profit of the cloud provider in IaaS clouds, which is composed of a price-based allocation rule and a payment rule. In the allocation rule, the online auction mechanism determines the number of VMs of each type to each user. In the payment rule, by introducing a marginal price function for each type of VMs, the mechanism determines how much the cloud provider should charge each cloud user. With solid theoretical analysis and trace-driven simulations, we demonstrate that our mechanism is truthful, fair and individually rational, and has a polynomial-time complexity. In addition, our auction achieves a competitive ratio for the profit of the cloud provider, compared against the offline optimal one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.