Abstract

To optimize the rapid transport of lithium ions (Li+) inside lithium metal batteries (LMBs), block copolymer electrolytes (BCPEs) have been fabricated in situ in LMBs via a one-step method combining reversible addition-fragmentation chain transfer (RAFT) polymerization and carboxylic acid-catalyzed ring-opening polymerization (ROP). The BCPEs balanced the Li+ coordination characteristics of the polyether- and polyester-based electrolytes to achieve a rapid Li+ migration in the SPEs. The carboxylic acid played a dual role since it both catalyzed the ROP and stabilized the interface. Furthermore, the in situ assembly of LMBs did effectively enable an efficient intercalation/de-intercalation of Li+ at the electrode/electrolyte interface. The in situ assembled Li/BCPE4/LFP exhibited high-capacity retention of 92% after 400 cycles at 1 C. The one-step in situ fabrication of BCPEs provides a new direction for the design of polymer electrolytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.