Abstract

Nano-scaled tungsten oxides and carbides are synthesized using a simple one-step chemical method. They are subsequently introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) catalysts to replace the expensive Pt. The catalytic mechanism is investigated by measurements of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel-polarization curve for the as-prepared catalysts. The DSCs using WC/W2C, W2C and WO2 as CE catalysts yield high power conversion efficiency (PCE) of 6.23%, 6.68%, and 6.88%, respectively, comparable to that of the DSC using Pt CE. The results demonstrate that tungsten oxides and carbides are the potential alternative to the expensive Pt CE for reducing the cost of DSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.