Abstract

Li4Ti5O12 (LTO) composites modified with carbon nanotubes (CNTs) and carbon coating (LTO@C/CNTs) were synthesized by a simple solid-state reaction. The carbon-coated layers reduce the growth of the primary particles, inhibit interface side reactions and increase electron conductivity, so CNTs-modified LTO can form a conductive network and improve the diffusion path of lithium ions. The LTO@C/CNTs composites show a high-rate capability (150 mAh g−1 at 10 C, 145 mAh g−1 at 20 C) with good cycling performance (90.1% and 82.8% capacity retentions after 1000 cycles at 10 C and 20 C, respectively). In addition, superior electrochemical performance is also demonstrated in a full cell with a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and LTO@C/CNTs anode (97.1% capacity retentions after 200 cycles at 1 C). The carbon coating and CNTs-modified in LTO can reduce the polarization of potential difference and charge-transfer resistance, improve the diffusion coefficient of lithium ions, and lead to high rate performance and cycle stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.