Abstract

The one-pot reductive coupling of N-acylcarbamates with activated alkenes is described. The method is based on partial reduction of N-acylcarbamates with DIBAL-H, followed by N-acyliminium ion formation and SmI(2)-mediated radical coupling with activated alkenes. Both acyclic and cyclic N-acylcarbamates can be used as stable substrates, and a range of activated alkenes serve as effective radical receptors. The reductive coupling of l-N-acylcarbamates 12/13 gave 2,5-disubstituted pyrrolidine derivatives in high trans-diastereoselectivities. The reductive coupling with penta-2,4-dienoate proceeded exclusively in a 1,6-addition fashion, producing a single non-conjugated E-isomer. On the basis of this method, a three-step construction of pyrrolo[1,2-a]azepin-5-one 16, the skeleton of many stemona alkaloids and lehmizidine alkaloids, and a seven-step synthesis of (-)-xenovenine (pyrrolizidine cis-223H, ent-6), the unnatural enantiomer of the frog/ant venom alkaloid possessing potent inhibitory activity towards nAChR channel, were achieved starting from L-12.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.