Abstract

Recent dark matter (DM) direct searches place very stringent constraints on the possible DM candidates proposed in extensions of the Standard Model. There are however models where these constraints are avoided. One of the simplest and most striking examples comes from a straightforward Higgs-portal pseudo-scalar DM model featured with a softly broken U(1) symmetry. In this model the tree-level DM-nucleon scattering cross section vanishes in the limit of zero momentum transfer. It has also been argued that the leading-order DM-nucleon cross section appears at the one-loop level. In this work we have calculated the exact cross section in the zero momentum transfer at the leading order i.e., at the one-loop level of perturbative expansion. We have concluded that, in agreement with expectations, the amplitude for the scattering process is UV finite and approaches zero in the limit of vanishing DM masses. Moreover, we made clear that the finite DM velocity correction at tree level is subdominant with respect to the one-loop contribution. Based on the analytic formulae, our numerical studies show that, for a typical choice of model parameters, the DM nuclear recoiling cross section is well below mathcal{O} (10−50 cm2), which indicates that the DM direct detection signal in this model naturally avoids present strong experimental limits on the cross section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.