Abstract

We present the fabrication of one-dimensional photonic crystals (Bragg stacks) based on a microporous metal–organic framework material and mesoporous titanium dioxide. The Bragg stack heterostructures were obtained using two complementary synthesis approaches utilizing the bottom-up assembly of heterogeneous, i.e. two-component photonic crystal multilayer structures. Zeolitic imidazolate framework ZIF-8 and mesoporous titanium dioxide were chosen as functional components with different refractive indices. While ZIF-8 is intended to impart molecular selectivity, mesoporous TiO2 is used to ensure high refractive index contrast and to guarantee molecular diffusion within the Bragg stack. The combination of micro- and mesoporosity within one scaffold endows the 1D-MOF PC with characteristic adsorption properties upon exposure to various organic vapors. In this context, the sorption behavior of the photonic material was studied as a function of partial pressure of organic vapors. The results show that the multilayered photonic heterostructures are sensitive and selective towards a series of chemically similar solvent vapors. It is thus anticipated that the concept of multilayer heterogeneous photonic structures will provide a versatile platform for future selective, label-free optical sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.