Abstract

AbstractThe problem of inferring the distribution of a random vector given that its norm is large requires modeling a homogeneous limiting density. We suggest an approach based on graphical models which is suitable for high-dimensional vectors. We introduce the notion of one-component regular variation to describe a function that is regularly varying in its first component. We extend the representation and Karamata's theorem to one-component regularly varying functions, probability distributions and densities, and explain why these results are fundamental in multivariate extreme-value theory. We then generalize the Hammersley–Clifford theorem to relate asymptotic conditional independence to a factorization of the limiting density, and use it to model multivariate tails.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.