Abstract

Multifunctional surfaces that are favorable for both droplet nucleation and removal are critical for water-harvesting applications, but there still remain great challenges. Herein, we proposed a facile strategy to construct hydrophobic surfaces containing moderate hydrophilic groups to achieve both exceptional droplet nucleation and removal. Different from natural desert beetle-inspired water-harvesting materials, these surfaces utilize limited hydrophilic domains to condense fog, and transport of formed tiny droplets relies on a hydrophobic background. The total surface area of the presented hydrophobic fabric contains hydrophilic groups, and the areas for trapping fog have increased. This feature is optimized to enhance the droplet nucleation density, and the surface still has excellent liquid repellency, resulting in maximum water collection efficiency of the prepared surface reaching up to 3.145 g·cm-2·h-1, much higher than the most reported water-harvesting materials. Due to its high efficiency and scalability, we believe that the proposed strategy to construct hydrophobic surfaces containing hydrophilic groups has great practical value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.