Abstract

Conductive hydrogels have shown great potential applications in a wide variety of fields, including artificial intelligence devices and biomedical engineering. However, it still remains a great challenge to develop a facile and cost-effective approach to achieve a conductive hydrogel with favorable qualities. Herein, we have changed the traditional ingredient of poly(vinyl alcohol) (PVA) hydrogel by the addition of phytic acid (PA), which could yield a conductive hydrogel through one freeze-thaw cycle. The PVA-PA hydrogel holds several virtues including a large stretchability (about 1100% strain), excellent conductivity (1.34 kΩ cm), and high optical transparence (about 95%). By assembling the PVA-PA hydrogel into a wearable strain sensor, the gel-based sensor has shown good performance for the real-time monitoring of human daily activities and health conditions. Moreover, one formula of the PVA-PA sol ink could rapidly convert to the gel state just by being injected on a flexible substrate under an ice-bath, which would satisfy the demand of casual writing circuits. This one-step preparation method of the PVA-PA hydrogel may open an innovative avenue for the fabrication of easy-molding and functional hydrogels with only two components under mild ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.