Abstract

Germanium (Ge) is considered to be one of the most promising anode materials due to the high theoretical capacity and excellent rate capability. However, its further development is hindered by the poor cycling stability caused by the severe volume change. Herein, we demonstrate a one-step in situ synthesis of Ge nanoparticles embedded into porous carbon framework (PC@Ge) using a facile sacrificial template method via the introduction of poly(methyl methacrylate) and subsequent thermal treatment. This unique nanoarchitecture not only enhances lithium-ion diffusivity and electron conductivity, but also effectively buffers the huge volume expansion and protects the Ge nanoparticles from cracking and aggregation during the cycling. Consequently, the as-prepared PC@Ge electrode exhibits superior capacity retention of 75% and 87% over 1000 cycles at 1.0 and 2.0 A·g−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.