Abstract

Positron emission tomography (PET) imaging is a useful method to evaluate in situ estrogen receptor (ER) status for the early diagnosis of breast cancer and optimization of the appropriate treatment strategy. The 18F-labeled estradiol derivative has been successfully used to clinically assess the ER level of breast cancer. In order to simplify the radiosynthesis process, one-step 18F-19F isotope exchange reaction was employed for the 18F-fluorination of the tracer of [18F]AmBF3-TEG-ES. The radiotracer was obtained with the radiochemical yield (RCY) of ~61% and the radiochemical purity (RCP) of >98% within 40 min. Cell uptake and blocking assays indicated that the tracer could selectively accumulate in the ER-positive human breast cancer cell lines MCF-7 and T47D. In vivo PET imaging on the MCF-7 tumor-bearing mice showed relatively high tumor uptake (1.4~2.3 %D/g) and tumor/muscle uptake ratio (4~6). These results indicated that the tracer is a promising PET imaging agent for ER-positive breast cancers.

Highlights

  • Breast cancer has become the most common malignancy in women and the incidence of breast cancer is increasing over the world [1]

  • The harsh radiosynthesis conditions and purification procedure limit the clinical applications of the estradiol-based Positron emission tomography (PET) imaging agents

  • A novel PET tracer [18F]AmBF3-ES was reported, which was synthesized by conjugating the estradiol with the AmBF3 directly [13]

Read more

Summary

Introduction

Breast cancer has become the most common malignancy in women and the incidence of breast cancer is increasing over the world [1]. One of the primary reasons that cause death from breast cancer may be due to the lack of effective early diagnosis method [1]. Development of novel effective early diagnosis methods is critical for the treatment and survival of patients with breast cancer. It is acknowledged that estrogen plays an important role in the initiation and progression of breast cancer [2, 3]. The stimulatory effect of estrogen is mediated by nuclear estrogen receptors (ERs) [4]. The estrogen receptor can serve as an important predictive biomarker of breast cancers [5]. The understanding of ER level is essential for prognosis and optimization of the treatment strategy. The ER-positive (ER+) tumors often respond to the hormonal therapy, whereas the ER-negative (ER−) tumors usually require the surgical and chemotherapeutic interventions [2, 6, 7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.