Abstract
This study presents for the first time the polymerization of methyl methacrylate (MMA) in the presence of poly(vinyl chloride) (PVC) that takes place by both SARA-ATRP and SET-LRP mechanisms. The two types of polymerizations that occur in the system are PMMA grafting to the PVC backbone and the formation of a new PMMA polymer, both occurring in the presence of a Cu0wire. The polymerizations were controlled as confirmed by the molecular weight evolution, polymerization kinetics, and variations in the dispersity value. The MMA polymerization in the presence of PVC at 60 and 70 °C leads to the formation of two polymer species characterized by an increase in the molecular weight with the conversion and a narrowing of the dispersity value with the reaction progress. To increase the degree of control over the polymerization, the same reaction was performed at room temperature, which allowed us to highlight the presence of the SARA-ATRP and SET-LRP mechanisms via subsequent polymer chain extensions. The results demonstrated that PMMA grafting on PVC polymers follows a SARA-ATRP mechanism, while the formation of a PMMA homopolymer entails a SET-LRP process. The influence of solvent nature on the polymerization reaction was studied by performing the grafting of N-isopropylacrylamide (NIPAM) onto the surface of PVC particles in aqueous media in the presence and in the absence of CuCl2. The polymerization reactions and the obtained materials were studied by gel permeation chromatography (GPC), 1H NMR, DMA, scanning electron microscopy (SEM), and atomic force microscopy (AFM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.