Abstract

Hybrid quantum systems can often be described in terms of polaritons. These are quasiparticles formed of superpositions of their constituents, with relative weights depending on some control parameter in their interaction. In many cases, these constituents are coupled to reservoirs at different temperatures. This suggests a general approach to the realization of polaritonic heat engines where a thermodynamic cycle is realized by tuning this control parameter. Here we discuss what is arguably the simplest such engine, a single qubit coupled to a single photon. We show that this system can extract work from feeble thermal microwave fields. We also propose a quantum measurement scheme of the work and evaluate its backaction on the operation of the engine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.