Abstract

The poor adhesion performance of typical gels still remains a challenge to find a simple method to achieve strong and reversible adhesion with the existence of water. Here, a poly(acryloyloxyethyl trimethyl ammonium chloride-co-2-vinyl-4-6-diamino-1,3,5-triazine) (P(DAC-co-VDT)) gel with high and adjustable interfacial adhesion is fabricated by combining cation-triazine π interaction and multiple hydrogen bonding and through a one-pot route. Characterization of the gels reveals that the two types of interactions are introduced into the gel network and that the gel-gel and gel-glass interfacial adhesion can be readily adjusted in a wide range from 15.98 to 123.60kPa. This approach enables the creation of high-strength composites using P(DAC-co-VDT) gel as matrix, anionic monomer sodium p-styrene sulfonate as ion concentration adjustor, and discrete quartz sands as filler with easy and repeated moldability and self-healing capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.