Abstract

In this study, a novel kind of Ni-NTA modified monodispersed SiO2 nanoflowers (Ni-NTA@SiO2 nanoflowers) were successfully synthesized. The obtained Ni-NTA@SiO2 nanoflowers were used to specifically adsorb and purify His-tagged old yellow enzyme (OYE1) and glucose dehydrogenase (GDH), which allows access to optically pure (3 S)− 3-methyl-cyclohexanone through asymmetric hydrogenation reaction, and forms a cofactor regeneration system. The protein loading amount on Ni-NTA@SiO2 nanoflowers was 40.17 mg/g support and the activity recoveries of OYE1 and GDH were 81.53% and 79.68%, respectively. The effects of pH and temperature on the activity of free and co-immobilized enzymes were investigated, and the stability as well as reusability were also measured. Compared to free enzymes, the co-immobilized enzymes showed higher thermal and storage stability. The co-immobilized enzymes were applied to asymmetric reduction of CC bonds for the synthesis of a chiral center with excellent enantioselectivity (ee > 99%), and the conversion was 46.02% after 7 cycles. This work introduced a one-pot multi-enzyme purification and co-immobilization strategy to construct efficient cofactor regeneration system with high activity and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.