Abstract

A coralloid 3D g-C3N4 supported VO2 catalyst was successfully synthesized in-situ by one-pot method, avoiding the agglomeration of VO2 during the reaction. The morphological and compositional information of the supported catalyst were investigated detailedly. 30% VO2/3D g-C3N4 revealed excellent catalytic activity in aerobic oxidative desulfurization, the oxidative of DBT, 4-MDBT and 4,6-DMDBT reached 98.6%, 99% and 99.4%, respectively, under the same mild conditions. The recycling performance and the mechanism on the oxidative of DBT were studied as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.