Abstract

A novel electroactive macromonomer based on poly(l-lactic acid) (PLLA) with (3,4-ethylenedioxythiophene) (EDOT) functional end groups, was prepared by a traditional approach of organometallic polymerization with stannous octanoate [Sn(oct2)] and enzymatic polymerization using immobilized Candida antarctica Lipase B (CAL-B) and Amano lipase Pseudomonas cepacia(PS-IM), as catalysts. In the synthetic strategy, (2,3-dihydrothieno[3,4-b] dioxin-2-yl)methanol (EDOT-OH) was used to initiate the ring opening polymerization of lactide to yield PLLA with EDOT end group. All macromonomers (EDOT-PLLA) were characterized by 1H and 13C RMN, MALDI-TOF, GPC and EDX. Moreover, ICP-OES analysis showed the presence of Sn traces in the material synthesized by the traditional approach, but that pathway led to macromonomers with higher molecular weight while the enzymatic route led to completely metal-free macromonomers with medium and lower molecular weights. Also, electrochemical and chemical polymerization of EDOT-PLLA were tested showing that it is possible to prepare degradable conducting polymers based on poly(3,4-ethylenedioxythiphene) (PEDOT). The biocatalytic synthesis is a very promising and environmental friendly pathway for the preparation of biodegradable materials for short time applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.