Abstract
This paper studies the linearized gravitational field in the presence of boundaries. For this purpose, $\zeta$-function regularization is used to perform the mode-by-mode evaluation of BRST-invariant Faddeev-Popov amplitudes in the case of flat Euclidean four-space bounded by a three-sphere. On choosing the de Donder gauge-averaging term, the resulting $\zeta(0)$ value is found to agree with the space-time covariant calculation of the same amplitudes, which relies on the recently corrected geometric formulas for the asymptotic heat kernel in the case of mixed boundary conditions. Two sets of mixed boundary conditions for Euclidean quantum gravity are then compared in detail. The analysis proves that one cannot restrict the path-integral measure to transverse-traceless perturbations. By contrast, gauge-invariant amplitudes are only obtained on considering from the beginning all perturbative modes of the gravitational field, jointly with ghost modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.