Abstract
Surface electronic structure and its one-dimensionality above and below the Fermi level ($E_{\rm F}$) were surveyed on the Bi/GaSb(110)-(2$\times$1) surface hosting quasi-one-dimensional (Q1D) Bi chains, using conventional (one-photon) and two-photon angle-resolved photoelectron spectroscopy (ARPES) and theoretical calculations. ARPES results reveal that the Q1D electronic states are within the projected bulk bandgap. Circular dichroism of two-photon ARPES and density-functional-theory calculation indicate clear spin and orbital polarization of the surface states consistent with the giant sizes of Rashba-type SOI, derived from the strong contribution of heavy Bi atoms. The surface conduction band above $E_{\rm F}$ forms a nearly straight constant-energy contour, suggesting its suitability for application in further studies of one-dimensional electronic systems with strong SOI. A tight-binding model calculation based on the obtained surface electronic structure successfully reproduces the surface band dispersions and predicts possible one- to two-dimensional crossover in the temperature range of 60--100~K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.