Abstract

A new redox-active, tris(amido) ligand platform, bis(2-isopropylamino-4-methoxyphenylamine [NNN(cat)](3-), has been prepared and used in the preparation of tantalum(V) complexes. The ligand was prepared in its protonated form by a three-step procedure from commercially available 4-methoxy-2-nitroaniline and 1-iodo-4-methoxy-2-nitrobenzene. Direct reaction of [NNN(cat)]H(3) with TaCl(2)Me(3) afforded five-coordinate [NNN(cat)]TaCl(2) (1), which accepted the strong sigma-donor ligand (t)BuNC to form the six-coordinate adduct [NNN(cat)]TaCl(2)(CN(t)Bu) (2). Complex 1 is formally a d(0), Ta(V) complex; however, one- and two-electron reactivity is enabled at the metal center by the redox-activity of the ligand platform. Complex 1 was oxidized by one electron to afford the radical species [NNN(sq*)]TaCl(3) (3), which was characterized by solution EPR spectroscopy. Cyclic voltammetry studies of complex 3 showed clean one-electron oxidation and reduction processes at 0.148 and -0.324 V vs [Cp(2)Fe](+/0), indicating the accessibility of three oxidation states, [NNN(cat)](3-), [NNN(sq*)](2-), and [NNN(q)](-), for the metallated ligand. Complex 1 also can undergo two-electron reactions, as evidenced by the reaction with nitrene transfer reagents to form tantalum imido species. Thus 1 reacted with organic azides, RN(3) (R = Ph, p-C(6)H(4)Me, p-C(6)H(4)(t)Bu), to form [NNN(q)]TaCl(2)(NR) (4). Similarly, the tantalum diphenylmethylidenehydrazido complex, [NNN(q)]TaCl(2)(NNCPh(2)) (5), was formed by reaction of 1 with the diazoalkane, N(2)CPh(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.