Abstract

The c-ret proto-oncogene encodes a receptor tyrosine kinase which plays an important role in neural crest as well as kidney development. Genetic studies have demonstrated that germ line mutations in the ret oncogene are the direct cause of multiple endocrine neoplasia (MEN) 2A and 2B, familial medullary thyroid carcinoma (FMTC), and Hirschsprung's disease. However, despite the large body of genetic and biological evidence suggesting the importance of RET in development and neoplastic processes, the signal transduction mechanisms of RET remain unknown. To begin to understand the molecular mechanisms of the disease states caused by mutations in RET, the patterns of autophosphorylation of the wild-type RET and the MEN mutants were studied using site-directed mutagenesis and phosphopeptide mapping. Among the 6 autophosphorylation sites found in the wild-type RET receptor, the MEN2B mutant lacked phosphorylation at Tyr-1096, leading to decreased Grb2 binding, while simultaneously creating a new phosphorylation site. These changes in autophosphorylation suggest that the MEN2B mutation may result in the more aggressive MEN2B phenotype by altering the receptor's signaling capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.