Abstract
The cellular responses to activated Ras vary depending on cell type. Normal cells are often induced into pathways that lead to cell growth arrest, senescence, and/or apoptosis in response to activated Ras expression. These are important protective anti-tumorigenic responses that restrict the propagation of cells bearing activated oncogenes. Here we show that induction of Ha-Ras(Val-12) in Rat-1 fibroblasts resulted in G(1) growth arrest and apoptosis with loss of viable cells that is accompanied by a marked decrease in cyclin D1 levels via increased ubiquitin-proteasome-dependent cyclin D1 turnover. This is in contrast with a rat intestinal epithelial cell line in which induction of Ha-Ras(Val-12) results in transformation associated with sustained proliferation and increased levels of cyclin D1, that is not accompanied by anoikis or apoptosis. Expression of the cyclin D1 mutant (T286A) that contains an alanine for threonine 286 substitution and is resistant to ubiquitin-proteasome degradation in the Ha-Ras(Val-12) expressing Rat-1 cells resulted in a sustained transformed phenotype with no accumulation of cells in G(1). Inhibition of mitogen-activated protein kinase (MEK1/2) pathway partially reversed the Ras-mediated decrease in cyclin D1. Induction of Ha-Ras(Val-12) resulted in activation of Akt kinase and inactivation of glycogen-synthase-3beta kinase that are associated with reduction of cyclin D1 protein. These results suggest that Ras-mediated cyclin D1 degradation in Rat-1 cells appears to be partially dependent on activation of mitogen-activated protein kinase pathway and independent of glycogen-synthase-3beta kinase pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.