Abstract

Extracellular vesicles (EVs) are lipid bilayer surrounded particles that are considered an additional way to transmit signals outside the cell. Lipids have not only a structural role in the organization of EVs membrane bilayer, but they also represent a source of lipid mediators that may act on target cells. Senescent cells are characterized by a permanent arrest of cell proliferation, but they are still metabolically active and influence nearby tissue secreting specific signaling mediators, including those carried by EVs. Notably, cellular senescence is associated with increased EVs release. Here, we used gas chromatography coupled to mass spectrometry to investigate the total fatty acid content of EVs released by fibroblasts undergoing H-RasV12-induced senescence and their parental cells. We find that H-RasV12 fibroblasts show increased level of monounsaturated and decreased level of saturated fatty acids, as compared to control cells. These changes are associated with transcriptional up-regulation of specific fatty acid-metabolizing enzymes. The EVs released by both controls and senescent fibroblasts show a higher level of saturated and polyunsaturated species, as compared to parental cells. Considering that fibroblasts undergoing H-RasV12-induced senescence release a higher number of EVs, these findings indicate that senescent cells release via EVs a higher amount of fatty acids, and in particular of polyunsaturated and saturated fatty acids, as compared to control cells.

Highlights

  • Extracellular vesicles (EVs) have been implicated in many physiological processes [1]

  • Taking into account that senescent fibroblasts release a higher number of EVs, these findings indicate that senescent cells release a higher amount of fatty acids, in particular saturated fatty acids (SFA) and PUFA, with respect to controls

  • H-RasV12 was expressed in HuDe fibroblasts by transfection and cells were pharmacologically selected with blasticidin-S to get rid of untransfected cells. pcDNA6 empty vector was transfected as control

Read more

Summary

Introduction

Extracellular vesicles (EVs) have been implicated in many physiological processes [1]. Three main types of EVs have been described, i.e., microvesicles budding from the plasma membrane (100–1000 nm), exosomes originating from the inward budding of late endosomes (30–150 nm), and apoptotic bodies released by cells undergoing apoptosis [5]. Despite their apparent simple classification, their similar and overlapping biochemical properties make it difficult to obtain preparation containing exclusively microvesicles or exosomes, so EVs are preferentially indicated as small EVs and large EVs, enriched either in exosomes or microvesicles, respectively [6]. EVs contain lipids, proteins and nucleic acids, namely ncRNA such as miRNAs and lncRNA and a few databases have been developed, such as EVpedia [8], listing the biochemical components retrieved in EVs

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.