Abstract

Chip-scale Fourier transform spectrometers (FTSs) have recently emerged for inexpensive, high-resolution spectroscopic applications. In particular, spatial-heterodyne FTSs (SH-FTSs) have drawn considerable attention with a simple and stable configuration based on an array of Mach–Zehnder interferometers (MZIs) with linearly increased optical path differences. There is a significant trade-off between spectral performance and the MZI number. In this work, we propose a dual-polarized SH-FTS, detecting both fundamental transverse electric and transverse magnetic modes, on a silicon photonic chip. Our experimental results show that, compared to the conventional single-polarized design, the MZI number of the dual-polarized SH-FTS can be nearly halved for a smaller footprint with little compromise of spectral performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.