Abstract
Heat management and refrigeration are key concepts for nanoscale devices operating at cryogenic temperatures. The design of an on-chip mesoscopic refrigerator that works thanks to the input heat is presented, thus realizing a solid-state implementation of the concept of cooling by heating. The system consists of a circuit featuring a thermoelectric element based on a ferromagnetic insulator-superconductor tunnel junction (N-FI-S) and a series of two normal metal-superconductor tunnel junctions (SINIS). The N-FI-S element converts the incoming heat in a thermovoltage, which is applied to the SINIS, thereby yielding cooling. The cooler's performance is investigated as a function of the input heat current for different bath temperatures. We show that this system can efficiently employ the performance of SINIS refrigeration, with a substantial cooling of the normal metal island. Its scalability and simplicity in the design makes it a promising building block for low-temperature on-chip energy management applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.