Abstract

On a filtered probability space \((\Omega ,\mathcal {F},P,\mathbb {F}=(\mathcal {F}_t)_{t=0,\ldots ,T})\), we consider stopping games \(\overline{V}:=\inf _{{\varvec{\rho }}\in \mathbb {T}^{ii}}\sup _{\tau \in \mathcal {T}}\mathbb {E}[U({\varvec{\rho }}(\tau ),\tau )]\) and \(\underline{V}:=\sup _{{\varvec{\tau }}\in \mathbb {T}^i}\inf _{\rho \in \mathcal {T}}\mathbb {E}[U(\rho ,{\varvec{\tau }}(\rho ))]\) in discrete time, where U(s, t) is \(\mathcal {F}_{s\vee t}\)-measurable instead of \(\mathcal {F}_{s\wedge t}\)-measurable as is assumed in the literature on Dynkin games, \(\mathcal {T}\) is the set of stopping times, and \(\mathbb {T}^i\) and \(\mathbb {T}^{ii}\) are sets of mappings from \(\mathcal {T}\) to \(\mathcal {T}\) satisfying certain non-anticipativity conditions. We will see in an example that there is no room for stopping strategies in classical Dynkin games unlike the new stopping game we are introducing. We convert the problems into an alternative Dynkin game, and show that \(\overline{V}=\underline{V}=V\), where V is the value of the Dynkin game. We also get optimal \({\varvec{\rho }}\in \mathbb {T}^{ii}\) and \({\varvec{\tau }}\in \mathbb {T}^i\) for \(\overline{V}\) and \(\underline{V}\) respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.