Abstract

Abstract In this paper we consider spaces of weight square-integrable and harmonic functions L 2 H(Ω, µ). Weights µ for which there exists reproducing kernel of L 2 H(Ω, µ) are named ’admissible weights’ and such kernels are named ’harmonic Bergman kernels’. We prove that if only weight of integration is integrable in some negative power, then it is admissible. Next we construct a weight µ on the unit circle which is non-admissible and using Bell-Ligocka theorem we show that such weights exist for a large class of domains in ℝ2. Later we conclude from the classical result of reproducing kernel Hilbert spaces theory that if the set {f ∈ L 2 H(Ω, µ)|f(z) = c} for admissible weight µ is non-empty, then there is exactly one element with minimal norm. Such an element in this paper is called ’a minimal (z, c)-solution in weight µ of Laplace’s equation on Ω’ and upper estimates for it are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.