Abstract
Walks in molecular graphs and their counts for a long time have found applications in theoretical chemistry. These are based on the fact that the (i, j)-entry of the kth power of the adjacency matrix is equal to the number of walks starting at vertex i, ending at vertex j, and having length k. In recent papers (refs 13, 18, 19) the numbers of all walks of length k, called molecular walk counts, mwc(k), and their sum from k = 1 to k = n - 1, called total walk count, twc, were proposed as quantities suitable for QSPR studies and capable of measuring the complexity of organic molecules. We now establish a few general properties of mwc's and twc among which are the linear dependence between the mwc's and linear correlations between the mwc's and twc, the spectral decomposition of mwc's, and various connections between the walk counts and the eigenvalues and eigenvectors of the molecular graph. We also characterize the graphs possessing minimal and maximal walk counts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Information and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.