Abstract

We consider two possible ways, i.e. the Maxwellian iteration (MI) and the Chapman–Enskog method (CEM), to recover relativistic ordinary thermodynamics from relativistic extended thermodynamics of Polyatomic gases with N moments. Both of these methods give the Eckart equations which are the relativistic version of the Navier–Stokes and Fourier laws as a first iteration. However, these methods do not lead to the same expressions of the heat conductivity χ, the shear viscosity µ, and the bulk viscosity ν which appear as coefficients in the Eckart equations. In particular, we prove that the expressions of χ, µ, and ν obtained via the CEM do not depend on N, while those obtained through the MI depend on N. Moreover, we also prove that these two methods lead to the same results in the nonrelativistic limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.