Abstract

A particle fluid suspension model is applied to the problem of pulsatile blood flow through a rigid circular tube with entrance effects. Flow is generated by an arbitrary (time and axial flow variable dependent) as well as a particular pressure gradient of physical importance. Fluid and particle phase velocities are explicitly determined for both, with and without entrance effects. Further, steady pulsatile velocities for both cases are deduced by taking time t -greater than . Several other limiting cases of physical and biological importance have been obtained and discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.