Abstract

The contourlet transform was proposed to address the limited directional resolution of the separable wavelet transform. One way to guarantee good approximation behavior is to let the directional filters in the contourlet filter bank have sharp frequency response. This requires filters with large support size. We seek to isolate the key filter property that ensures good approximation. In this direction, we propose filters with directional vanishing moments (DVM). These filters, we show, annihilate information along a given direction. We study two-channel filter banks with DVM filters. We provide conditions under which the design of DVM filter banks is possible. A complete characterization of the product filter is, thus, obtained. We propose a design framework that avoids 2-D factorization using the mapping technique. The filters designed, when used in the contourlet transform, exhibit nonlinear approximation comparable to the conventional filters while being shorter and, therefore, providing better visual quality with less ringing artifacts. Furthermore, experiments show that the proposed filters outperform the conventional ones in image approximation and denoising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.