Abstract
Abstract Microstructure and acoustic profile time series were collected near Ocean Station P in the eastern subarctic North Pacific and in Saanich Inlet at the south end of Vancouver Island, British Columbia, Canada, to examine production of turbulent dissipation by swimming marine organisms. At Ocean Station P, although a number of zooplankton species are large enough to generate turbulence with Reynolds numbers Re > 1000, biomass densities are typically less than 103 individuals per cubic meter (<0.01% by volume), and turbulent kinetic energy dissipation rates ɛ were better correlated with 16-m vertical shear than acoustic backscatter layers. In Saanich Inlet, where krill densities are up to 104 individuals per cubic meter (0.1% by volume), no dramatic elevation of dissipation rates ɛ was associated with dusk and dawn vertical migrations of the acoustic backscatter layer. Dissipation rates are a factor of 2 higher [〈ɛ〉 = 1.4 × 10−8 W kg−1, corresponding to buoyancy Re = 〈ɛ〉/(νN 2) ∼ 140] in acoustic backscatter layers than in acoustically quiet waters, regardless of whether they are vertically migrating. The O(1 m) thick turbulence patches have vertical wavenumber spectra for microscale shear commensurate with the Nasmyth model turbulence spectrum. However, the turbulence bursts of O(10−5 W kg−1) proposed to occur in such dense swarms appear to be rare. Thus far, intense turbulent bursts have been found infrequently, even in very dense aggregations O(104 individuals per cubic meter) characteristic of coastal and high-latitude environs. Based on sampling to date, this corresponds to a frequency of occurrence of less than 4%, suggesting that turbulence production by the marine biosphere is not efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.