Abstract

We performed kinetics experiments and quantum calculations to investigate the reaction of furan to benzofuran catalyzed by the acidic zeolite HZSM-5, which is a key step in the conversion of biomass to biofuels through catalytic fast pyrolysis. The reaction was studied experimentally by placing the zeolite in contact with solution-phase furan and detecting the benzofuran product over the temperature range 270–300 °C, yielding an apparent activation energy of 72 ± 3 kJ/mol. The reaction was modeled in gas and zeolite phases to determine the energetics of the following two competing pathways: a Diels–Alder mechanism often assumed in interpretations of experimental data and a ring-opening pathway predicted by the chemoinformatic software RING. Quantum calculations on the zeolite/guest system were performed using the ONIOM embedded cluster approach. We computed the energetics of reactants, products, and all intermediate steps. Locating relevant transition states fell beyond our computational resources because...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.