Abstract

Artificial Intelligence-based tools have shown promising results to help clinicians in diagnosis tasks. Radio-genomics would aid in the genotype characterization using information from radiologic images. The prediction of the mutations status of main oncogenes associated with lung cancer will help the clinicians to have a more accurate diagnosis and a personalized treatment plan, decreasing the need to use the biopsy. In this work, novel and objective features were extracted from the lung that contained the nodule, and several machine learning methods were combined with feature selection techniques to select the best approach to predict the EGFR mutation status in lung cancer CT images. An AUC of 0.756 ± 0.055 was obtained using a logistic regression and independent component analysis as feature selector, supporting the hypothesis that CT images can capture pathophysiological information with great value for clinical assessment and personalized medicine of lung cancer. Clinical Relevance - Radiogenomic approaches could be an interesting help for lung cancer characterization. This work represents a preliminary study for the development of computer-aided decision systems to provide a more accurate and fast characterization of lung cancer which is fundamental for an adequate treatment plan for lung cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.