Abstract

In this paper, the classical problem of the probabilistic characterization of a random variable is reexamined. A random variable is usually described by the probability density function (PDF) or by its Fourier transform, namely the characteristic function (CF). The CF can be further expressed by a Taylor series involving the moments of the random variable. However, in some circumstances, the moments do not exist and the Taylor expansion of the CF is useless. This happens for example in the case of α -stable random variables. Here, the problem of representing the CF or the PDF of random variables (r.vs) is examined by introducing fractional calculus. Two very remarkable results are obtained. Firstly, it is shown that the fractional derivatives of the CF in zero coincide with fractional moments. This is true also in case of CF not derivable in zero (like the CF of α -stable r.vs). Moreover, it is shown that the CF may be represented by a generalized Taylor expansion involving fractional moments. The generalized Taylor series proposed is also able to represent the PDF in a perfect dual representation to that in terms of CF. The PDF representation in terms of fractional moments is especially accurate in the tails and this is very important in engineering problems, like estimating structural safety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.